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1. Introduction.

Let{xn}::;°° be a q-variate (1 < q < ©) weakly stationary stochastic process
with the spectral density matrix f. In the Kolmogorov-Wiener theory of predictibn.
one assumes that the spectral density f and the infinite past P ={ Xp; miO} are
known and the problem is to express the linear least squares predictor of X,
denoted by 21. in terms of the components of f and P. It can be shown that 21
can formally be written as

R &
X1~ 1 AnX g
m=0
where Ag =-CoDpy1» for the notation see Section 2.

In practice, however, one seldom knows f and P, and therefore it is necessary
to approximate il by some properly chosen approximants based upon the available
information. Very often, this available information is a finite segment of the
past, i.e. Pp={X_n3 C<m<n-1}. Here, we consider the as yet impractical case of
knowing £ and P, and this will provide some useful results for the case when
only P, is known and f has to be estimated.

Now, knowing f and P, there are two natural approximants for il' The first
one being the partial sum of the series representation of ilzil’n-ni: ApX_p.

The second approximant is the linear least squares predictor of X; ::sed on

P,, denoting this by Xt’n, we have Xt’n,_néi ApmX_p» Where the coefficients Apm,
Ocm<n-1, can be obtained as the result ofmsolving a minimization problem. Havirg
identified these two approximants, it is natural to ask as how good they are.
Namely it is of interest to know how fastl[ﬁl-ﬁl’nl|andl]ﬁl-iq,nllapproach

zero as m¥. The main purpose of tﬁis paper is to find rates of convergence to
zero for these quantities, or the errors of approximating the infinite pre-

dictor il by finite predictors xl’n and XT,n.
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It is obvious that if the series representation of X1 does not converge in
[ ]

the mean, then |[|X.-X. || = || z A X || does not go to zero at all as n+». This
1 l,n mentl © R

may suggest the type of (smoothness) conditions which one may need to impose on

{Xn} or £ in order to obtain a fast rate of convergence.
-}

The rate of convergence of ||X,-X* || is dominated by that of || ] A X ||
1 71,n - m -m )

and “xl,n-x?,n“ s cf. (2.9). The rate of convergence of||X1’n-Xf.n|[is expected

to plav fundamer.cal roles in some statistical problers related to the estimation
of f, when only Pn is available. For the univariate processes this is dem- e
onstrated in [2,6], see also Section 4.
Let G be the qxq matrix of one-step ahead prediction error. Define O=tr@,
oo-(trG;‘r')2 and °n'||x1'xf,n” 2. Note that for q=1, Os0g. With this notation ;;*.

the outline of the paper is as follows. Section 2 is devoted to introducing

some preliminary results establishing some useful relationships among On,0 and

o]
/1 D _‘. ._1
For a univariate stationary process an important result of Grenander and i -
Rosenblatt [4, Thm.4], [5, p. 188] gives necessary and sufficient conditions on f fﬂ
for the rate of convergence of 0On-0g(=0,-0) to decrease at least exponentially to i!w.;%
zero. The rate of convergence of Oy-0p plays an important role in finding the B i
rate of convergence for finite linear predictors. The entire Section 3 is devoted . .
to finding an appropriate multivariate extension of this result of Grenander and L ~:
Rosenblatt, i.e. finding necessary and sufficient conditions on the matrix f j
such that §,=q Oh-oo decreases to zero at least exponentially, cf. Theorems 3.2
and 3.7. The proof presented in [4,5] depends heavily on the analytical properties f’ 1
of orthogonal polynomials with respect to f. Since matricial orthogonal poly- . ,:
nomials may not enjoy all of these properties or they are hard to prove, special 1
attempt is made to prove the results of Section 3 without adherence to the . -
®

?
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— it — . -




‘‘ LRl gt e vl Jacth s St )

3
orthogonal polynomials. This is done by adapting a multivariate version of a ' R
method used in Devinatz [3], cf. Theorem 3.1. Devinatz's proof of the necessity i;
part of the Result of Grenander and Rosenblatt is still based on properties of ;;;;;

orthogonal polynomials. We get around this by using a lemma due to Miamee [9],

c¢f. Theorems 3.6 and 3.7.

In Section 4 under the boundedness condition on the spectral density, cf. (4.1),

we show that the approximation errors; || }El-lzl'nll R ”;El'x’f’n“ and ||§1’R-Xf’n" ' '_4
have the same order as Sp=q On~Gq- Therefore, combining this with the multivariate }ﬁ
extension of the result of Grenander and Rosenblatt we get exponential rate of } ..é
convergence to zero for these errors provided that the entries of f are analytic .
functions on [-w,m}, ¢f. Theorems 4.1 and 4.2. Theorem 4.3 provides a rate of
convergence for the finite linear interpolator of { X,} when only one value, say, _~wuj
Xg is unknown. ? ]
2. Preliminaries e
Let (2,F,P) be a probability space and M-L%(Q,F.P) the Hilbert space of all ’ 1
complex-valued random variables on  with zero expectation and finite variance.
The inner product in ¥ is given by ) ]
®

(x'Y)”Bx; » X,yeEM.
Following [8] for an integer q>1, M3 denotes the cartesian product of M with itself

q times, i.e. the set of all column vectors X-(xl,xz,...,xq) with X EM, Z=1,2,...,q.

o
M! is endowed with a Gramian structure. For X and Y in Md their Gramian is defined
to be the qxq matrix (X,Y) = [(xi.yj)]? 3 X It is well-known that M3 is a Hiltert
Ty]=
space under the inner product ((X,Y)) = trace (X,Y) = g (xj.yj) and norm )
j=1 o
|| X|| = /{TX,X)), provided the linear combinations are formed with constant matrices
as their coefficients.
- - *m(g :
Throughout this paper, for a gxq matrix A (aij)' trA izl a o A (aji)’ det A °
stands for the determinant of A, Afl for the inverse of A when it exists and ||Al} E
for the Eucleadian norm of A 1i.e. HAIIE-(tr AA*)*. For two qxq matrices A and B,
9

Lm e am A= = A .=
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A>B means that A-B>0, i.e. A-B is a non-negative definite matrix. The qxq

identity matrix is denoted by I.

Functions will be defined on [-m,7] and we

identify this interval with the unit circle in the complex plane in the natural

way. Values of a function f defined on the unit circle will be denoted by £(8)

instead of f(e

ze).

dm stands for the normalized Lebesgue measure on {[-m,m], i.e.

dm(@)=d6/2m. For 1l<p<w, LP(#P) denotes the usual Lebesgue (Hardy) space of

functions on the unit circle.

qxq

P P denotes the space of all gxq matrix-

qxq)

valued functions whose entries are in LP(HP).

In the following we introduce a few concepts which are needed in this study.

A more complete discussion with proofs can be found in [8,15].

Let {Xp; ne 2} C M be a q-variate weakly stationary stochastic process

(WSSP) with the spectral density matrix f. The time domain of { X} is defined

by sp { Xyt nez} =M (X), where sp {

of { } in the metric of MY,

} stands for the closed linear span of elements

The spectral domain corresponding to the spectral

density matrix f is denoted by Lz(f) and is defined by Lz(f) ={9;0 18 a qxq matrix

valued function with ||<1>||2 = ftrd (8)£(0) ¢ *(6)dm(6) < =}, It is known that
£

L2(f) with inner product given by ((¢,W))f- Jtrd £ Y *dm(6) is a Hilbert space

and it is isomorphic to M(X).

The problem of linear least squares prediction of a gq-variate WSSP {Xn} can

be stated as the problem of finding the qxq matrices A, such that the linear

~

least squares predictor of X; based on Xy, m<0, denoted by X}, can be written as

~ n

X1=1.1i.m. z ApX_p, where l.i.m. stands for the convergence in the norm of Ml
n° m=0 A -~

(or in the mean). Let G=(X;-X;,X;-X;) be the one-step ahead prediction error

matrix. The process {Xn} is said to be of full-rank if the matrix ¢ is nonsingular.

From now on, we assume that the process { Xn} is purely non-deterministic and

full-rank.

This is equivalent to assuming that {Xn} has a spectral density f

with log det fe:L1 and f=0d*, where ¢eH§xq is an outer function with constant

term ¢0-Gk. We refer to ¢ as the generating function of the process { Xp}.

Since { X,} 1s full-rank, we can define a process { Y,} called the normalized

>
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innovation process of { X5} such that (Yp,Y,) = 5m,n1' By using the Wold'sg

decomposition [8] we have

xﬂ- z chn-m » (CO-QO'GLE)
m=0
(2.1)

o(8)= } Cme1:me
m=0

Since ¢ is analytic with no zeros in the open unit disc, hence ¢-1 is analytic

and denoting its Fourier (Taylor) coefficients by Dy, k=0,1,2,..., we have

(2.2) ¢ (0)= § Dyet™®,
m=0

with this notation the linear least squares predictor of X; can formally be

written as
(2.3) xl"'co Z D+l Xopg
m=0

where the infinite series on the right hand side of (2.3) may not converge in

the norm of Mﬂ.

We say that the linear least squares predictor of X] has a mean convergent

autoregressive representation if the series in (2.3) converges in the norm of M.

In practice, however, we have only a finite number of observations xo,x_l,...,
x—(n—l) from which one has to construct a linear predictor for X;. For this one
has two options. The first one being the partial sum of the series in (2.3). Thus,
with Ama-CODm+1 and denoting this linear predictor by xl,n we have

R n-1
(2.4) X o= 1 Ac¥en
m=0

1f ﬁl has a mean convergent autoregressive representation, then the norm of the

error of approximating ﬁl by il n is given by
»
oo
(2.5) IIXI-)?1 n||- |- AgXop |20 as o=,
’ men+1

A different linear predictor for Xl, denoted by XT n® can be obtained as the
»

linear least squares predictor of X, based on n observations X_;, 0<m<n-1, from

!

‘li 4
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the past. Thus, we have

.. n-1

. (2.6) X} - I AmXop

m=0

_ n-1 2
where A, 0<m<n-1, can be found by minimizing the norm ||Xj- ] ByX.p||© =

. n , m=
Ser(1- Y Bmezme) f(I- Z Bme‘l'me)* dm(0) over all choices of the constant
m=1 m=]

. matrices Bp.
Let us denote the minimum value of this norm by on. Then, it can be shown

that this minimum is attained for the polynomial Pn(e)-onvn(e), where

n .

E Vn(e)" 2 Unmeule is the unique polynomial of degree n satisfying
| w=0

2 2.7) Str U 0)£®) e Pam(e)=s, , » Ocksn.

This unique minimizing polynomial U, plays an important role in this paper.
In the following we give a different characterization of the matrix-valued
polynomial Vn.

Lemma 2.1. Let f=0¢* and gp=(tr ¢0)2. Then,

(a) min Jtr(1-P2)(1-P)*du= /|1-/Gg V|2 dm,
where the min is taken over all nth degree polynomials :
4
n w0 A
Pg)= )} P nmet . .‘
m=0 .
1
o5 U, o2 '
) Jl-g Y, ¢[|E dm=q- G/0y,. » ]
Proof. (a) Let Mn"-g{e"’ke $; O<k<n} in Lz(f). Then the minimum in (a) is
attained for some H in Mp, if and only if I-H$ is orthogonal to M, or equivalently i
. . 1
ser(1-H0)o%e “¥Oanm0, 0<k<n.
’ h
It is easy to show that H=/Gy U, satisfies the above relation. (b) follows from
p direct compulation and the fact that Str UV, dm=/Gg/op and (2.7) with k=0. ® |
r 1
1
4
. )
i 1
S —— —




Q.E.D.

Since ¢71 is the isomorph of YO (the normalized innovation) the following
corollary, which follows immediately from Lemma 2.1, provides a different
. characterization of U in that ,6, U 1is the isomorph of the linear least

squares estimate of Y0 based on the finite past. Note that with this inter-

pretation, q- Ooldn is the norm of the error of this estimator.

Corollary 2.2. Under the notation of Lemma 2.1, we have i i

min ftr(qfl-/cgp )f(¢—1-ﬁEP)dm=ftr(d>-l-/0—o_f{l)f(¢_1-ﬁ61{1)*dm -

T

-q-oolon. :

It turns out that the rate of convergence of q- oolcn as n* plays a crucial

.1
“‘

ﬁ role in studying the rate of convergence of finite linear predictors and inter-

polator of a q-variate WSSP {xn}. This is shown in the next two sections. In

———

the following we record several inequalities which are useful in connecting

rates of convergence of different quantities related to the problem studied here.

vy vﬁ
[

®]

i

3

re

The following chain of inequalities follows from the definition of X,, Xl a

and X¥*

. 1,n° .
~_ lIx1-%1 [} < lIX1-x¢ 1l < |1X1-%1,a
1 (2.8) R eo
i <Ixp-xpll+ | 1 ApXem]l -
| m=n+1
e A LI
{ For the last inequality to hold it is necessary to assume that X; has a mean j

convergent autoregressive representation and this will be assumed throughout. D
ii . this paper. Also, for the norm of the error of approximation of X; by X{ o Ve ]

1
L I
have :
A A o
| (2.9) lx-xs WXy X3 0+ 00 ) Ax -
b m=n+1
»

+! Let o denote the norm of the one-step ahead prediction error vector, that )
» ~
f is o=|| XI-XIH 2-trG-tr¢g. It follows from (2.8) that 1
r . -
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~ @

E (2.10) o -0 || xl—xl.nn -o<__||m.£+1 Amx_m” .

‘ o

; Thus the rate of convergence of On-o is determined by that of || Z Amx—m”’
n+l

And the rate of convergence of the latter is determined by q--OO/C»In as it follows

ﬁ from Theorem 3.1 (b). The next section is devoted to the study of the rate of
convergence of q-colon, when the spectral density matrix f has sufficiently

smooth entries. We note that for a univariate process, i.e. q=l, on-c and q—oo/'on

But, the situation is

i have exactly the same rate of convergence (since 0=00).

completely different for q>1.

S 3. Rates of Convergence of 6n-qon-co.
- Since {on} is a bounded decreasing sequence it follows that the rate of
: convergence of qon-oo is the same as that of q-oolon. The next theorem which 4
is a multivariate extension of Theorem 1 in Devinatz [3] plays an important role > -9
in estimating the rate of convergence of (Sn. Parts (b) and (c) of this theorem ]
is used in finding rates of convergence for the linear predictor and inter- A ]
polator of {X,}. ' B
R
Theorem 3.1
(a) 1f f-le Lcllxq and H is any matrix-valued trigonometric polynomial of degree
n with H>YI, 0<y<®, then, q-ooloni A_l ftr(f-l-ﬂ)f(f—l-ﬂ)*dm, where \>0 »
is a constant. %
- * T oa )
q oolon_>_c )) trd  DZ. e
m>n .
t k8 C
(c) If cI<E<dI, O<c<d<, and if S= } D e ;
-— - n k .
k=0 :
with crsns; <y<~ for all n, then L*‘
e (2 AR ~ o
- > * ]
q oolon_(mafv-) |'12n|>n tr fm fm » where fm is the m~" Fourier E
LI
1
]
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coefficient £ 1.
Proof. (a) Let f=00%, H=P*P, where ¢ and P are the optimal factors of f and H
respectively, cf. [8], [13, p. 504]. Denoting by @0 and Po the constant terms of

these H2 functions, we have
qxq

Ser (£ lomy £ (£ iy = Ser (0% 0™ -prp) 0o% (0% 16~ -PAP) dm
3.1) = ftr(<I>-1P-1-<I>*P*)PP*(P;1<I>;1-P<I>)dm

>/ Po-(oxpr) 1| f: dm.

In the above argument we have used the fact that for compatible matrices A,B
trAB=trBA, and that the eigenvalues of (PP*)(0) and (P*P)(8) are the same, and

they are greater than Y.

1 is orﬁhogonal to ((I”‘fP’")"l-P-ltb-1

—1 -
Since P<I>el-§x ¢ it follovs that Po-F(loy 5 %

therefore,

LHS of (3.1)>Y/|IP (')1 ¢ al-m I gdm-'yftr(l-%PoPd?) (<!’01P(2,4b0)'l (I-0 P P) *dm

2L -0 7 o | Edm,

where A is the largest eigenvalue of ¢0Pg¢o. and the desired result follows from
Lemma 2.1 (a), (b).

(b) From Corollary 2.2 we have
-1 -1
q-00/0n=ftr(¢ -MEB'U;)f(¢ -/EB'U;)*dm

-1 2
>cfll ¢ -/c% Un“ Edm

[+ ]
>e ) tr D D*,
T men+l mm

where the last inequality follows from the matricial Parseval's identity, cf. [15I,

p. 121].

(¢) By the matricial Parseval's identity we have

A A _1 2 —l —1 . 2
|m§>ntr £ £ < SIET-sAs || ¢ dm<e /|| 07 -oxsts || .

!



Also,
~1 -1
b7 -onsas 1| gell 70=s || g+l s -ewss |l 5
and
2
—dkgk - ~ kg% * (T-OhSh)*
Il s -9 s*s_|| gtr(I-0*SX)S S*(I-0*S*)
<(tr S_S*)tr(d '-s )oox (¢ -5 )
- nn n n
-1 2
in” ¢ -Sn“ E'
Thus,
-1 -1
~0ks * < -
|| 8™ -o%s _#s_[| <(1+AQ) || ¢7"-8 || -
and
2
T oer £ ey 015U 0| Zm
c 0 E
m|>
1443 1
-( ) (Q'U /O )’
c 0 _
by Lemma 2.1(b). - -
LIS
Q.E.D. S
To find the rate of convergence of 6n=q0n-00 when the entries of f are sufficiently .
smooth we need to have a matricial extension of the following important (univariate) i )
theorem due to Grenander and Rosenblatt [4,5]: A necessary and sufficient condition ]
that Gn-on-oo decreases at least exponentially to zero as n tends to infinity,
is that £(0) coincides in [-7,7] almost everywhere with a function which is » y
analytic for real 6 and has no real zeros.
]
In the rest of this section we prove a matricial extension of this theorem. )
Our method of proof is similar to that of Devinatz {3]. However, in the proof '} ‘;
of the necessity part given here, we do not use the properties of orthogonal ]
polynomials with respect to f. Instead, we use a lemma due to Miamee [9] which
provides a simpler and more direct proof of this part. In this section by the | I

zeros of a matrix-valued function f we mean the zeros of det f.

|
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The following theorem provides a matricial extension of the sufficiency
part of the theorem of Grenander and Rosenblatt.
Theorem 3.2. Let f>cI, O<c<», with entries that coincide in [-7,m] almost

everywhere with functions which are analytic for real 6, . then

Gn-qo n-UO‘O(pn) » O<p<i,
Proof. Since f>cI, it follows that the entries of £ =(£*9) are analytic in
an open annulus { Ze¢; p<|z|<§}, 0<p<l. By using an argument similar to that
in {3, pp. 114-115] we get that ; ij. the kth Fourier coefficient of Eij sat-

k
isfies fkfj- O(Qk) and that Sn, the symmetric partial sum of the Fourier series

of £ °, converges uniformly to f_l. Thus, we have from Theorem 3.1 (a) that
for n large
8 =q0,~0=0( Ik}mtr Ekgﬁ) ’
from which the result follows.
Q.E.D.
By using an argument similar to that in the proof of Theorem 3.2, and
Theorem 2 [14] we obtain a slower rate of convergence for 6n under much weaker
differentiability requirement on the entries of f. It is interesting to compare
this result with Theérem 3.1 and its special case in Baxter [l, p. 138].
Theorem 3.3. Let f>cI, 0<c<®, and d be a positive integer.

(a) If all the entries of f-l-(ftj) have 2d-th derivative on [-m,m], and the

Fourier series of these 2d-th derivatives converge, then

-2d
Gn-qon—oo O(n 7).

{b) 1f all the entries of f.(fi ) have 2d-th derivative on [-m,m}, and the

3

Fourier series of these 2d-th derivatives are absolutely summable, then

-24
§,=q0_~0,=0(n ).
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Next, we prove a multivariate version of the necessity part of the theorem
of Grenander and Rosenblatt. For a matrix Weszq, we define a norm for ¥
by Hvlh- f||W|Edm. The following lemma plays an important role 'in our proof

of this result. For completeness we sketch the proof of this lemma [9].

Lemma 3.4 (Miamee). If Lz(f)c L;xq’ then there exists a positive constant M

such that
¥l < ||w||L2(f) , for all YeL2(f).

Proof. It is enough to show that the operator T:L (f)-*L;xq defined by
T(Y)=Y is closed, then the result follows from the closed graph theorem.

Q.E.D.
The assumption Lz(f)C L;xq.is a natural one, since it guarantees that the
Fourier coefficients of any function in the spectral domain is well-defined.

Furthermore, it is not restrictive as the following simple lemma shows.
1

le ! , and only if (det f)‘fci'ELl.

The next theorem, which is of independent interest, shows that if 5n

goes to zero sufficiently rapidly, then the entries of f_1 have summable Fourier

series [3].

Theorem 3.6. If 2 2" 6!i <wand L (f)C L axq’ then the entries of f-l have
n=1 2"

summable Fourier series.

Proof. We have from Corollary 2.2, Lemma 3.5 and Cauchy-Schwartz inequality that

(q-oo/on)”-utrw'l-/a; Un)f(a'l—ﬁ U ) *dm) *

_>_(M«:|)'1 E r1¢¥3-v; L

1y3=1

-1 j ~
>(Mq) sup | (475 oVn sy ©
z.jzl £0 n, 23 |

>(Mq) ! 3 10|

i,3=1
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— et

for k>n+l, where Un i denotes the 7j-th element of v, -
Thus, we have ~
2™ J n % . d
) |¢k | <&k 2%68 %  n=l,2,...,7,3=1,...,q,
k=2"+1 2
and summing both sides over n we get
L J

20|¢k"j| <o, 7,§%1,2,...,q,
k=

which implies that the entries of Q-l have summable Fourier series. Hence, the -
-1 -1.- ®
same is true of f l-d’*l(b 1, cf. [7, p. 31]. o
Q.E.D.

Now we can prove the multivariate version of the necessity part of the Grenander

and Rosenblatt's theoren. »
Theorem 3.7. If Gn-O(p“), 0<p<l. Then f has no real zeros and all the entries of
i f are analytic on [-m,T]. e
) 4
Proof. Since )) Gn < w, it follows from Theorem 3.6 that f>cI for some constant o
0<c<~. Thus, tfl:':nu Theorem 3.1 (b)
)
kzn+l tr D D} < K 07, »
and this implies that the entries of <1>-1 and 4;1 are analytic functions on
(7,7]. Hence, the entries of f l=0%% ! are analytic. Now, £! can have no real
zeros since this would contradict the fact that £ is in Lcquq' Thus, f--(fnl).1 is -.
analytic with no real zeros.
Q.E.D. '
4. Rates of Convergence of Finite Linear Predictors o
In this section by using the results of the previous section we find rates of
convergence for the finite linear predictors when the process { X,} has a smooth
spectral density function. Here, we confine our attention to the case wt«n the ’ .
entries of f are analytic functions of 6. Similar results can be obtained when




TYT Y

-

(- -] a
2 im@ |, 2 - -4
Y AnXogll “<d S|l ] A e || gam(e) »
n+l n+l 4
- |
=d ] uam ]
(4.2) avl o
© »
. s A
<do nzltr D, D2,
and thus from Theorem 3.1 (b) we have
4
© [
- ( l’ -_‘A
(4.3) D ax Il =06 .
+l
This combined with Theorem 3.2 and (2.8) gives the following
]
Theorem 4.1. Let {X,} be a q-variate WSSP with the spectral density matrix f T
satisfying (4.1) whose entries are analytic function of 6. Then, there exists
a p, 0 <gp<l, such that
A A n .- —
(a) IIXl-Xl’nII = 0(p).
() o -0 = o(p".
> n
@ XX |- o= 0" °
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entries of f have properties like those stated in Theorem 3.3.

~

When X; has a mean convergent autoregressive representation it follows from
(2.8) that the finite linear least squares predictor of X;, i.e. Xf a converges
1 4
to X; in the norm of MY, According to (2.9) the rate of convergence in this

@ A
case is dominated by || § ApX-p|| and | X, X Il . It is shown by Wiener
ot »nSen

and Masani [15 II] that the boundedness condition
(4.1) cI < f<dI, 0<c<d<w,

is sufficient for the existence of a mean convergent autoregressive representation i
of Xl. For weaker conditions and more up to date results of this type, see

[11, 12]. 1It follows from (4.1) that

n n
(d) er Dknﬁ = O(p) and tr C, CF = O0(p ).
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Next we concentrate on finding the rate of convergence of IIXI-XT n“ .
*

Because of (2.9) and (4.3) it is enough to find the rate of convergence of

A

lef,n-xl,n” :

inequality and convergence equivalence involving Szegd's orthogonal poly-

For q=1, this has been found by Baxter [l] using a certain

nomials. It seems very difficult to obtain matricial extension of these

results. In the following we obtain the rate of convergence of||X1 n—xl n“
14 14

when 1<q<w, without using the notion of orthogonal polynomials.

The rate of convergence of ]IXT 5 n” is of fundamental importance in the
] »

statistical theory of multiple time series, particularly in studying the asymptotic

properties of the autoregressive estimator of the spectrum, cf. [2,6]. This

importance is revealed by the following simple fact: If f>cI, then

n
2 ”~
(4.5) mzllhm.co Dm“ E-O( ||X'ir.n-x1.n|| )

which provides a rate of convergence to zero for the entries of the matrices

Anm-co Dm’ n-1,2’ DR

~

In the following we find the rate of convergence of || xf n-X || by using
’

l,n
a slightly different but equivalent characterization of X% n than that introduced

and used in Sections 2 and 3. This is based on identifying Xf n as the unique
minimizer of the matricial functional Y(Y)=(X -Y, X,-Y), Ye L=sp{X_,; O<k<n-1}.

We say that Y.€L is a minimizer of Y(.) and write W(Yo)-min P(Y) if

0 YeL

Y(YPY(Y), for all Yel.

It is shown in (8, p. 354] that such a Yo exists and it is unique. This
unique minimizer is X* n’ indeed. Next we characterize the isomorph of X* a
1] »
in the spectral domain. Let

(4.6) Gn-min JPf Pkdm,

LA

PR S
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n .
where the min is taken over all n':h degree matricial polynomial P(6)= 2 Pme"’me
m=0

n .
with PO=I. If U (8)= z U etme is the minimizer of (4.6), then v can be
n o0 O n

characterized as the unique nth degree polynomial with UHOBI for which

Sy f ™ dmm0, l<mcn.

A different and more useful characterization of v, is given by letting

-1
Vn-Gn Un and showing that

min/ (I-P$) (I-P) *dm=

(4.7) _ ) TS
I (T-0V, ©) (I-0V 0)*du=I-d G- "0,

-1 -1
S -¢0Vn)f(¢ -¢0Vn)*dm.

where the min is taken over all nth degree matricial polynomials. It should be

noted that the identities in (4.7) are essentially the matricial version of the
n ,
results of Lemma 2.1 and Corollary 2.2. Let Sn(6)= Z DmemIle » with these
m=0

notations and the fact that GnVn =C D =1 we have

0 00

N n
I xT,n.xl,n" - ILZO(GnYnm-CODm)x—m”

n
||m Eo GV GV GV GG ) S

n
< Bl Il b v g+l Il 0gy, s, -

We have
G ~GLtr (G ~6) . I=(0 -0)1,
Therefore,
(4.9) lle-6llg=o(o_-0).

’ 1
o
-
>
-
.\v‘
__
| S
3
®

— «
L
]
B 1
(I
T
’ 1
e

® .
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The rate of convergence of “qbvn-SnIl can be obtained as follows:

From (4.7) with f£>cI we have

THrer TN 1S ()] o7 oy | Zamy s

2, % Y

(f||Sn-¢oVn||Edm) -(mgntrDmD;) »
therefore,
(4.10) O A ||§dm)"_<_ (} trDmD;);i-!-c—;’[ tr(I-Gl’G:G;’) )5,

 m>n o

From Theorem 3.1 (b) we have

(4.11) mgncrnmng = 0(5),

as for tr(I-G*C;le) we have from the simple identity

1% Yo e ) e,
n n n
that

er(1-6% e Hmte € -6) < (e D ere )% < xll 6 -l -

Thus, from (4.9) we have

(4.12) :r(x-al’a;la”) - 0(0_-0).

By combining these estimates with (2.9), Theorems 3.2 and 4.1 (b) we get the

following
Theorem 4.2. Under the conditions of Theorem 4.1 we have

n
- 2
@ 1 lID0g8, Al 2 = s -0V |l gam = 0G™.
me= .

- n
) |x X’f.nll - 000").

l,n-

@ lIxp=xy [l = oe™.

SmTe e "."f?"

-
L
E
I
g
e
]
1
e
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Theorem 3.1 (¢) can be used to find the rate of convergence for the finite

linear interpolator of {Xn}. For this let us assume that all the values of {Xn}

are known, except for the value XO. Then, under the assumption that f-leL1 ’

qxq
it is known [10] that the linear least squares interpolator of XO’ denoted by

v
XO, can formally be written as

V A-l A
(4.13) Xy~ ~f4 £.X

k#0

where fk is the kth Fourier coefficient of the matrix f-l. Sufficient conditions -

for the mean convergence of the series in (4.13) are given in [10]. In part-
icular, it follows from Theorem 7 [10] that the boundedness condition (4.1)
guarantees the convergence of this series.

Now one can form a finite interpolator for Xo, denoted by io,n and defined

- n .
4 -1
by xO,n--fO z f_kxk. The error in norm of this approximation is given by

k=-n
k#0

v ¥ 2 -1, 2 ~  1k0y, 2
X=Xy Nl “<allgg il © FI 3 £ e || “du=
0 0)“ 0 Ik sn -k E

=d|f. | Y trff.

Thus, from Theorem 3.1 (c) we have
|1%,-%
X0

b
O,nII = O(Gn )s

and combining this with Theorem 3.2 we get the following

Theorem 4.3. Under the conditions of Theorem 4.1 we have

kg, ol = 0. 0 <p< 1.

o
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T
An exponential rate of convergence for the finite linear interpolator of

a univariate stationary process, when its past and future are at positive angle ]

{10,11], is obtained by Salehi [13]. However, in his work the finite linear o
interpolator is obtained by using the Von Neumann's alternating projectionms, -
as a result it is less feasible for computation since it involves the one- ;;;;i
sided innovation process {Yn} and the coefficients of the optimal factor of the *
density. An interesting by product of Salehi's approach is the identification :J

of p in Theorem 4.3 with the cosine of the angle between the past and future

of the process {xn}. In view of this, one may raise the following natural and
useful question: 1Is it possible to identify the constant p appearing in this
praper (say, in Theorem 3.2) with the cosine of the angle between the past and o
future of the process {Xn}? 1f the answer is positive then in an obvious manner, -’
the results of this paper confirm the intuitively appealing fact that the closer
this angle is to 7/2 the faster the finite predictors will converge to the o
infinite predictor ﬁl' ?
Another problem which is worthy of study in comnection with this work is
the infinite-dimensional generalization of the results presented here. Presence . :
of q in Theorem 3.1 and Gn shows that the method of proof used here is intrinsically ® ..
finite~dimensional. It is of interest to know, e.g. the analogues of Theorem 3.1
and 6n in the infinite dimensional case. :
® ...
8. _
.
®
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o —e o
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